
Chapter 3

The sphere primitive and resizing objects

You showed the car to your friends and they were quite impressed with your new skills. One of

them even challenged you to come up with different futuristic wheel designs. It’s time to put

your creativity to work and learn more OpenSCAD features!

So far you have been using the cube and cylinder primitives. Another 3D primitive that is

available in OpenSCAD is the sphere. You can create a sphere using the following command.

sphere(r=10);

You should notice that the sphere is created centered on the origin. The input parameter r

corresponds to the radius of the sphere.

One idea that came to your head was to replace the cylindrical wheels with circular ones.

Try making the wheels of your car spherical. To do so replace the appropriate cylinder
commands with sphere commands. Is there still a need to rotate the wheels around the X
axis? Is the wheel_width variable still required? Is there any visible change to your model
when you modify the value of wheels_turn variable?

wheel_radius = 8;

base_height = 8;

top_height = 10;

track = 40;

body_roll = 0;

wheels_turn = 20;

rotate([body_roll,0,0]){

// Car body base

cube([60,20,base_height],center=true);

// Car body top

translate([5,0,base_height/2+top_height/2])cube([30,20,top_height],center=true);

}

// Front left wheel

translate([-20,-track/2,0])rotate([0,0,wheels_turn])sphere(r=wheel_radius);

// Front right wheel

translate([-20,track/2,0])rotate([0,0,wheels_turn])sphere(r=wheel_radius);

// Rear left wheel

translate([20,-track/2,0])rotate([0,0,0])sphere(r=wheel_radius);

// Rear right wheel

translate([20,track/2,0])rotate([0,0,0])sphere(r=wheel_radius);

// Front axle

translate([-20,0,0])rotate([90,0,0])cylinder(h=track,r=2,center=true);

// Rear axle

translate([20,0,0])rotate([90,0,0])cylinder(h=track,r=2,center=true);

The idea to use a sphere to create the wheels was nice. You can now squish the spheres to give

them a more wheel like shape. One way to do so is using the scale command.

Try creating a sphere with a radius of 10 units on a blank model. Use the scale command to
scale the sphere by a factor of 0.4 only along the Y axis.

scale([1,0.4,1])sphere(r=10);

Another way to scale objects is by using the resize transformation. The difference between scale

and resize is that when using the scale command, you have to specify the desired scaling factor

along each axis but when using the resize command you have to specify the desired resulting

dimensions of the object along each axis. In the previous example you started with a sphere that

has a radius of 10 units (total dimension of 20 units along each axis) and scaled it by a factor of

0.4 along the Y axis. Thus, the resulting dimension of the scaled sphere along the Y axis is 8

units. The dimensions along the X and Z axis remain the same (20 units) since the scaling factors

along these axes are equal to 1. You could achieve the same result using the following resize

command.

resize([20,8,20])sphere(r=10);

When you are scaling/resizing an object and you are concerned about its resulting dimensions it

is more convenient to use the resize command. In contrast when you are concerned more about

the ratio of the resulting dimensions compared to the starting dimensions it is more convenient

to use the scale command.

Try squishing the spherical wheels of your car along the Y axis. Use the resize command and
the wheel_width variable to have control over the resulting width of the wheels. Resize the
wheels only along the Y axis.

wheel_radius = 8;

base_height = 8;

top_height = 10;

track = 30;

wheel_width = 4;

body_roll = 0;

wheels_turn = -20;

rotate([body_roll,0,0]){

// Car body base

cube([60,20,base_height],center=true);

// Car body top

translate([5,0,base_height/2+top_height/2])cube([30,20,top_height],center=true);

}

// Front left wheel

translate([-20,-

track/2,0])rotate([0,0,wheels_turn])resize([2*wheel_radius,wheel_width,2*wheel_radius])spher

e(r=wheel_radius);

// Front right wheel

translate([-

20,track/2,0])rotate([0,0,wheels_turn])resize([2*wheel_radius,wheel_width,2*wheel_radius])sp

here(r=wheel_radius);

// Rear left wheel

translate([20,-

track/2,0])rotate([0,0,0])resize([2*wheel_radius,wheel_width,2*wheel_radius])sphere(r=wheel_

radius);

// Rear right wheel

translate([20,track/2,0])rotate([0,0,0])resize([2*wheel_radius,wheel_width,2*wheel_radius])sp

here(r=wheel_radius);

// Front axle

translate([-20,0,0])rotate([90,0,0])cylinder(h=track,r=2,center=true);

// Rear axle

translate([20,0,0])rotate([90,0,0])cylinder(h=track,r=2,center=true);

The new wheel design looks cool. You can now create a body that better suits this new style.

Try using the sphere and resize/scale commands in place of the cube commands to create a
body that matches the style of the wheels.

wheel_radius = 8;

base_height = 8;

top_height = 10;

track = 28;

wheel_width = 4;

body_roll = 0;

wheels_turn = -20;

rotate([body_roll,0,0]){

// Car body base

resize([90,20,12])sphere(r=10);

// Car body top

translate([10,0,5])resize([50,15,15])sphere(r=10);

}

// Front left wheel

translate([-20,-

track/2,0])rotate([0,0,wheels_turn])resize([2*wheel_radius,wheel_width,2*wheel_radius])spher

e(r=wheel_radius);

// Front right wheel

translate([-

20,track/2,0])rotate([0,0,wheels_turn])resize([2*wheel_radius,wheel_width,2*wheel_radius])sp

here(r=wheel_radius);

// Rear left wheel

translate([20,-

track/2,0])rotate([0,0,0])resize([2*wheel_radius,wheel_width,2*wheel_radius])sphere(r=wheel_

radius);

// Rear right wheel

translate([20,track/2,0])rotate([0,0,0])resize([2*wheel_radius,wheel_width,2*wheel_radius])sp

here(r=wheel_radius);

// Front axle

translate([-20,0,0])rotate([90,0,0])cylinder(h=track,r=2,center=true);

// Rear axle

translate([20,0,0])rotate([90,0,0])cylinder(h=track,r=2,center=true);

Combining objects in other ways

So far when you wanted to create an additional object in your model, you just added another

statement in your script. The final car model is the union of all objects that have been defined in

your script. You have been implicitly using the union command which is one of the available

boolean operations. When using the union boolean operation, OpenSCAD takes the union of all

objects as the resulting model. In the following script the union is used implicitly.

sphere(r=10);

translate([10,0,0])sphere(r=10);

You can make the use of union explicit by including the union command in your script.

union(){

sphere(r=10);

translate([12,0,0])sphere(r=10);

}

You should notice that the union command doesn’t have any input parameters. This is true for

all boolean operations. The union is applied to all objects inside the curly brackets. You should

also notice that the statements inside the curly brackets have a semicolon at the end. In

contrast there is no semicolon after the closing curly bracket. This syntax is similar to the use of

transformations when applied to multiple objects.

In total there are three boolean operations. The second one is the difference. The difference

command subtracts the second and all further objects that have been defined inside the curly

brackets from the first one. The previous example results in the following model when using the

difference operation instead of the union.

difference(){

sphere(r=10);

translate([12,0,0])sphere(r=10);

}

Further defined objects (third, fourth etc.) are also subtracted. The following example has three

objects.

difference(){

sphere(r=10);

translate([12,0,0])sphere(r=10);

translate([0,-12,0])sphere(r=10);

}

The third boolean operation is the intersection. The intersection operation keeps only the

overlapping portion of all objects. The previous example results in the following model when the

intersection operation is used.

intersection(){

sphere(r=10);

translate([12,0,0])sphere(r=10);

translate([0,-12,0])sphere(r=10);

}

The resulting model is the common area of all three objects.

When only the first two spheres are defined inside the curly brackets, the intersection is the

following.

intersection(){

sphere(r=10);

translate([12,0,0])sphere(r=10);

}

Try using the difference operation to create a new wheel design. To do so first create a sphere
and then subtract a portion of a sphere from both sides. The radius of the first sphere should
be equal to the desired wheel radius (wheel_radius variable). The radius of the other two
spheres should be equal to a side_spheres_radius variable. Given a hub_thickness variable
what is the amount of units that the side spheres should be translated along the positive and
negative direction of Y axis so that the thickness of the remaining material at the center of the
first sphere is equal to the value of hub_thickness?

wheel_radius=10;

side_spheres_radius=50;

hub_thickness=4;

difference(){

sphere(r=wheel_radius);

translate([0,side_spheres_radius + hub_thickness/2,0])sphere(r=side_spheres_radius);

translate([0,- (side_spheres_radius + hub_thickness/2),0])sphere(r=side_spheres_radius);

}

Try removing some material from the wheels by subtracting four cylinders that are
perpendicular to the wheel. The cylinders should be placed at half the wheel radius and be
equally spaced. Introduce a cylinder_radius and a cylinder_height variable. The value of
cylinder_height should be appropriate so that the cylinders are always longer than the
thickness of the material they are removed from.

wheel_radius=10;

side_spheres_radius=50;

hub_thickness=4;

cylinder_radius=2;

cylinder_height=2*wheel_radius;

difference(){

// Wheel sphere

sphere(r=wheel_radius);

// Side sphere 1

translate([0,side_spheres_radius + hub_thickness/2,0])sphere(r=side_spheres_radius);

// Side sphere 2

translate([0,- (side_spheres_radius + hub_thickness/2),0])sphere(r=side_spheres_radius);

// Cylinder 1

translate([wheel_radius/2,0,0])rotate([90,0,0])cylinder(h=cylinder_height,r=cylinder_radius,cent

er=true);

// Cylinder 2

translate([0,0,wheel_radius/2])rotate([90,0,0])cylinder(h=cylinder_height,r=cylinder_radius,cent

er=true);

// Cylinder 3

translate([-

wheel_radius/2,0,0])rotate([90,0,0])cylinder(h=cylinder_height,r=cylinder_radius,center=true);

// Cylinder 4

translate([0,0,-

wheel_radius/2])rotate([90,0,0])cylinder(h=cylinder_height,r=cylinder_radius,center=true);

}

Try using the above wheels in one version of the car.

wheel_radius = 10;

base_height = 10;

top_height = 14;

track = 35;

wheel_width = 10;

body_roll = 0;

wheels_turn = 0;

side_spheres_radius=50;

hub_thickness=4;

cylinder_radius=2;

cylinder_height=2*wheel_radius;

rotate([body_roll,0,0]){

 // Car body base

 cube([60,20,base_height],center=true);

 // Car body top

translate([5,0,base_height/2+top_height/2])cube([30,20,top_height],center=true);

}

// Front left wheel

translate([-20,-track/2,0])rotate([0,0,wheels_turn])difference(){

 // Wheel sphere

 sphere(r=wheel_radius);

 // Side sphere 1

 translate([0,side_spheres_radius + hub_thickness/2,0])sphere(r=side_spheres_radius);

 // Side sphere 2

 translate([0,- (side_spheres_radius + hub_thickness/2),0])sphere(r=side_spheres_radius);

 // Cylinder 1

translate([wheel_radius/2,0,0])rotate([90,0,0])cylinder(h=cylinder_height,r=cylinder_radius,cent

er=true);

 // Cylinder 2

translate([0,0,wheel_radius/2])rotate([90,0,0])cylinder(h=cylinder_height,r=cylinder_radius,cent

er=true);

 // Cylinder 3

 translate([-

wheel_radius/2,0,0])rotate([90,0,0])cylinder(h=cylinder_height,r=cylinder_radius,center=true);

 // Cylinder 4

 translate([0,0,-

wheel_radius/2])rotate([90,0,0])cylinder(h=cylinder_height,r=cylinder_radius,center=true);

}

// Front right wheel

translate([-20,track/2,0])rotate([0,0,wheels_turn])difference(){

 // Wheel sphere

 sphere(r=wheel_radius);

 // Side sphere 1

 translate([0,side_spheres_radius + hub_thickness/2,0])sphere(r=side_spheres_radius);

 // Side sphere 2

 translate([0,- (side_spheres_radius + hub_thickness/2),0])sphere(r=side_spheres_radius);

 // Cylinder 1

translate([wheel_radius/2,0,0])rotate([90,0,0])cylinder(h=cylinder_height,r=cylinder_radius,cent

er=true);

 // Cylinder 2

translate([0,0,wheel_radius/2])rotate([90,0,0])cylinder(h=cylinder_height,r=cylinder_radius,cent

er=true);

 // Cylinder 3

 translate([-

wheel_radius/2,0,0])rotate([90,0,0])cylinder(h=cylinder_height,r=cylinder_radius,center=true);

 // Cylinder 4

 translate([0,0,-

wheel_radius/2])rotate([90,0,0])cylinder(h=cylinder_height,r=cylinder_radius,center=true);

}

// Rear left wheel

translate([20,-track/2,0])rotate([0,0,0])difference(){

 // Wheel sphere

 sphere(r=wheel_radius);

 // Side sphere 1

 translate([0,side_spheres_radius + hub_thickness/2,0])sphere(r=side_spheres_radius);

 // Side sphere 2

 translate([0,- (side_spheres_radius + hub_thickness/2),0])sphere(r=side_spheres_radius);

 // Cylinder 1

translate([wheel_radius/2,0,0])rotate([90,0,0])cylinder(h=cylinder_height,r=cylinder_radius,cent

er=true);

 // Cylinder 2

translate([0,0,wheel_radius/2])rotate([90,0,0])cylinder(h=cylinder_height,r=cylinder_radius,cent

er=true);

 // Cylinder 3

 translate([-

wheel_radius/2,0,0])rotate([90,0,0])cylinder(h=cylinder_height,r=cylinder_radius,center=true);

 // Cylinder 4

 translate([0,0,-

wheel_radius/2])rotate([90,0,0])cylinder(h=cylinder_height,r=cylinder_radius,center=true);

}

// Rear right wheel

translate([20,track/2,0])rotate([0,0,0])difference(){

 // Wheel sphere

 sphere(r=wheel_radius);

 // Side sphere 1

 translate([0,side_spheres_radius + hub_thickness/2,0])sphere(r=side_spheres_radius);

 // Side sphere 2

 translate([0,- (side_spheres_radius + hub_thickness/2),0])sphere(r=side_spheres_radius);

 // Cylinder 1

translate([wheel_radius/2,0,0])rotate([90,0,0])cylinder(h=cylinder_height,r=cylinder_radius,cent

er=true);

 // Cylinder 2

translate([0,0,wheel_radius/2])rotate([90,0,0])cylinder(h=cylinder_height,r=cylinder_radius,cent

er=true);

 // Cylinder 3

 translate([-

wheel_radius/2,0,0])rotate([90,0,0])cylinder(h=cylinder_height,r=cylinder_radius,center=true);

 // Cylinder 4

 translate([0,0,-

wheel_radius/2])rotate([90,0,0])cylinder(h=cylinder_height,r=cylinder_radius,center=true);

}

// Front axle

translate([-20,0,0])rotate([90,0,0])cylinder(h=track,r=2,center=true);

// Rear axle

translate([20,0,0])rotate([90,0,0])cylinder(h=track,r=2,center=true);

