Importing Geometry

Importing is achieved by the import() command.

[Note: Requires version 2015.03-2] The File >> Open command may be used to insert this command. The file type filter of the Open File dialog may show only OpenSCAD files, but file name can be replaced with a wildcard (e.g. *.stl) to browse to additional file types.

import

Imports a file for use in the current OpenSCAD model. The file extension is used to determine which type.

3D formats
2D formats
Other
CSG can be imported using include<> or loaded like an SCAD file, PNG can be imported using surface()

Parameters

<file>
A string containing the path to file.:If the give path is not absolute, it is resolved relative to the importing script. Note that when using include<> with a script that uses import(), this is relative to the script doing the include<>.
<convexity>
An Integer. The convexity parameter specifies the maximum number of front sides (back sides) a ray intersecting the object might penetrate. This parameter is needed only for correctly displaying the object in OpenCSG preview mode and has no effect on the polyhedron rendering. Optional.
<layer>
For DXF import only, specify a specific layer to import. Optional.
import("example012.stl", convexity=3);
import("D:/Documents and Settings/User/My Documents/Gear.stl", convexity=3);
(Windows users must "escape" the backslashes by writing them doubled, or replace the backslashes with forward slashes.)

Read a layer of a 2D DXF file and create a 3D shape.

linear_extrude(height = 5, center = true, convexity = 10)
        import_dxf(file = "example009.dxf", layer = "plate");

Convexity

Openscad convexity.jpg

This image shows a 2D shape with a convexity of 4, as the ray indicated in red crosses the 2D shape a maximum of 4 times. The convexity of a 3D shape would be determined in a similar way. Setting it to 10 should work fine for most cases.

Notes

In the latest version of OpenSCAD, import() is now used for importing both 2D (DXF for extrusion) and 3D (STL) files.

If you want to render the imported STL file later, you have to make sure that the STL file is "clean". This means that the mesh has to be manifold and should not contain holes nor self-intersections. If the STL is not clean, it might initially import and preview fine, but then as soon as you attempt to perform computational geometry on it by rendering a combination of it with something else, you might get warnings about it not being manifold, your imported stl might disappear from the output entirely, or you might get errors like:

 CGAL error in CGAL_Build_PolySet: CGAL ERROR: assertion violation!
 Expr: check_protocoll == 0
 File: /home/don/openscad_deps/mxe/usr/i686-pc-mingw32/include/CGAL/Polyhedron_incremental_builder_3.h
 Line: 199

or

 CGAL error in CGAL_Nef_polyhedron3(): CGAL ERROR: assertion violation!
 Expr: pe_prev->is_border() || !internal::Plane_constructor<Plane>::get_plane(pe_prev->facet(),pe_prev->facet()->plane()).is_degenerate()
 File: /home/don/openscad_deps/mxe/usr/i686-pc-mingw32/include/CGAL/Nef_3/polyhedron_3_to_nef_3.h
 Line: 253

In order to clean the STL file, you have the following options:

Using MeshLab, you can do:


Next, you can click the icon 'Fill Hole', select all the holes and click Fill and then Accept. You might have to redo this action a few times.

Use File - Export Mesh to save the STL.


If Meshlab can't fill the last hole then Blender might help:

  1. Start Blender
  2. `X, 1` to remove the default object
  3. File, Import, Stl
  4. `Tab` to edit the mesh
  5. `A` to de-select all vertices
  6. `Alt+Ctrl+Shift+M` to select all non-manifold vertices
  7. `MMB` to rotate, `Shift+MMB` to pan, `wheel` to zoom
  8. `C` for "circle" select, `Esc` to finish
  9. `Alt+M, 1` to merge or `Space` and search for "merge" as alternative
  10. Merging vertices is a useful way of filling holes where the vertices are so closely packed that the slight change in geometry is unimportant compared to the precision of a typical 3D printer

import_dxf

[Deprecated: import_dxf() will be removed in future releases. Use import() instead.]

Read a DXF file and create a 3D shape.

linear_extrude(height = 5, center = true, convexity = 10)
        import_dxf(file = "example009.dxf", layer = "plate");

import_stl

[Deprecated: import_stl() will be removed in future releases. Use import() instead.]

Imports an STL file for use in the current OpenSCAD model

import_stl("body.stl", convexity = 5);

surface

surface() reads Heightmap information from text or image files. It can read PNG files.

Parameters

file
String. The path to the file containing the heightmap data.
center
Boolean. This determines the positioning of the generated object. If true, object is centered in X- and Y-axis. Otherwise, the object is placed in the positive quadrant. Defaults to false.
invert
Boolean. Inverts how the color values of imported images are translated into height values. This has no effect when importing text data files. Defaults to false. [Note: Requires version 2015.03]
convexity
Integer. The convexity parameter specifies the maximum number of front sides (back sides) a ray intersecting the object might penetrate. This parameter is needed only for correct display of the object in OpenCSG preview mode and has no effect on the final rendering.

Text file format

The format for text based heightmaps is a matrix of numbers that represent the height for a specific point. Rows are mapped to the Y-axis, columns to the X axis. The numbers must be separated by spaces or tabs. Empty lines and lines starting with a # character are ignored.

Images

[Note: Requires version 2015.03]

Currently only PNG images are supported. Alpha channel information of the image is ignored and the height for the pixel is determined by converting the color value to Grayscale using the linear luminance for the sRGB color space (Y = 0.2126R + 0.7152G + 0.0722B). The gray scale values are scaled to be in the range 0 to 100.

Examples

Example 1:

//surface.scad
surface(file = "surface.dat", center = true, convexity = 5);
%translate([0,0,5])cube([10,10,10], center =true);
#surface.dat
10 9 8 7 6 5 5 5 5 5 
9 8 7 6 6 4 3 2 1 0 
8 7 6 6 4 3 2 1 0 0
7 6 6 4 3 2 1 0 0 0
6 6 4 3 2 1 1 0 0 0
6 6 3 2 1 1 1 0 0 0
6 6 2 1 1 1 1 0 0 0
6 6 1 0 0 0 0 0 0 0
3 1 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0

Result:

Openscad surface example x1.png

Example 2

 // example010.dat generated using octave:
 // d = (sin(1:0.2:10)' * cos(1:0.2:10)) * 10;
 // save("example010.dat", "d");
 intersection() {
   surface(file = "example010.dat", center = true, convexity = 5);
   rotate(45, [0, 0, 1]) surface(file = "example010.dat", center = true, convexity = 5); 
 }

Openscad surface example x2.png

Example 3:

[Note: Requires version 2015.03]

// Example 3a
scale([1, 1, 0.1])
  surface(file = "smiley.png", center = true);
// Example 3b
scale([1, 1, 0.1])
  surface(file = "smiley.png", center = true, invert = true);
Input image
Input image
Surface output
Example 3a: surface(invert = false)
Surface output inverted
Example 3b: surface(invert = true)
Example 3: Using surface() with a PNG image as heightmap input.